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Abstract

Particular attention are recently receiving antimicrobial agents added as preservatives in hygiene and cosmetics commercial products, since
some of them are suspected to be harmful to the human health. The preservatives used belong to different classes of chemical species and are
generally used in their mixtures. Multi-component methods able to simultaneously determinate species with different chemical structure are
therefore highly required in quality control analysis. This paper presents an ion interaction RP-HPLC method for the simultaneous separation
of the 20 typical antimicrobial agents most used in cosmetics and hygiene products, that are: benzoic acid, salicylic acid, 4-hydroxybenzoic
acid, methyl-, ethyl-, propyl-, butyl-, benzyl-benzoate, methyl-, ethyl-, propyl-, butyl-, benzyl-paraben,o-phenyl-phenol, 4-chloro-m-cresol,
triclocarban, dehydroacetic acid, bronopol, sodium pyrithione and chlorhexidine. For the development of the method and the optimization of
the chromatographic conditions, an experimental design was planned and models were built by the use of artificial neural network to correlate
the retention time of each analyte to the variables and their interactions. The neuronal models developed showed good predictive ability and
were used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Many are the preservatives commonly used as antimi-
crobial agents in cosmetics and hygiene products. The
compounds admitted and their concentration are ruled
by the European Economic Community laws by the di-
rective 76/768: the maximum admitted concentrations
are, respectively: 0.4% (w/w) if only one preservative is
present and 0.8% (w/w) expressed asp-hydroxybenzoic
acid content if more than one preservatives are present
[1]. Preservatives belong to different classes of compounds
as organic acids (sorbic, salicylic, dehydroacetic, benzoic,
4-hydroxybenzoic, etc.), alkyl esters of benzoic acid, alkyl
esters of alkyl-p-hydroxybenzoic acids (parabens), phenol
derivatives (o-phenyl-phenol, 4-chloro-m-cresol, etc.), car-
banilides (triclocarban), etc. Since they are often employed

∗ Corresponding author. Tel.:+39-0131-287428;
fax: +39-0131-287416.

E-mail address: marengo@unipmn.it (E. Marengo).

in multi-component mixtures, multi-residue methods are
highly requested.

Benzoic acid is generally determined by UV-ion-pair
HPLC [2] and by GC-MS after derivatization[3]. Parabens
are determined by RP-HPLC with UV-Vis detection in
isocratic[4–8] and in gradient elution[9–11], by HP-TLC
[12–14], by CZE with UV and DAD detection[11,15–17]
and by GC-MS[3,18] methods. HPLC with electrochemi-
cal detection is employed for the determination of bronopol
[19,20] and HPLC with UV detection for the determination
of triclocarban[8,21,22], salicylic acid and alkyl benzoates
[7]. 4-Chloro-m-cresol in pharmaceutical preparations is
quantified by flow injection analysis[23]. Few examples
of separation of mixtures are reported that require com-
plex systems of detection[19] or gradient elution[23].
The RP-HPLC separation of 47 preservatives was achieved
through the combined and alternative use of four different
sets of conditions[7]. The extraction of preservatives from
cosmetic products normally is performed by diluting the
sample[4], or by an extraction by solvent or solid phase
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Fig. 1. Analytes structures (R represents the different alkylic functional groups: methyl, ethyl, propyl, butyl, benzyl).

[6]; In alternative method a supercritical fluid extraction
(SFE) with supercritical carbon dioxidewas performed[9].

In this lab a method for the separation of 14 preserva-
tives has been previously developed, based on ion interac-
tion RP-HPLC technique, that is very suitable for mixtures
of species with different hydrophilicity and chemical prop-
erties[24–27]: the optimization of the chromatographic con-
ditions was obtained by a simplex algorithm[28].

In this paper we propose another application of the
IIR-HPLC technique for the simultaneous separation of the
20 most commonly used preservatives and namely: benzoic
acid, salicylic acid, 4-hydroxybenzoic acid, methyl-, ethyl-,
propyl-, butyl-, benzyl-benzoate, methyl-, ethyl-, propyl-,
butyl-, benzyl-paraben,o-phenyl-phenol, 4-chloro-m-cresol,
triclocarban, dehydroacetic acid, bronopol, sodium pyri-
thione and chlorhexidine. Their chemical structures are
reported inFig. 1.

The experimental conditions to be optimized are: the con-
centration of the organic modifier (acetonitrile), the pH value
of the mobile phase, the ion interaction reagent concentra-
tion and the elution flow rate. Flow rate effect is easily pre-
dictable: it was introduced among the experimental factors

in order to be able shorten the total analytical time while
maintaining a satisfactory resolution of the analytes. The
experimental domain was explored by experimental design
and the optimization of the chromatographic conditions was
performed by modeling the retention times using artificial
neural networks (ANN), that are mathematical algorithms
which permit to model complex behaviors of the investi-
gated systems by simulating the brain functioning.

2. Theory

In order to model analyte retention times as a function of
the four experimental factors, back-propagation ANN was
used.

In back-propagation ANN, the neural network is consti-
tuted by: (i) an input layer, where each neuron is associated
to an experimental factor; (ii) layers of processing neurons,
the so-called hidden layers; and (iii) an output layer, where
each neuron is associated to the response.

The signal moves from the input layer towards the output
layer (Fig. 2a), and in this process each neuron uploads all
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Fig. 2. (a–b) Functional schemes of the neural network.

the neurons of the successive layers, transferring a portion
of the signal that it has been accumulated. The portion of
signal transferred is regulated by a transfer function, similar
to the one represented inFig. 2b. For central values of the
signal, the portion transferred is approximately proportional
to the signal itself, while at the extreme values of the signal,
the portion transferred is either null or 1. In every neuron of
the hidden layers and of the output layer the signals coming
from every neuron of the previous layer are accumulated
applying a multiplying weight.
∑

i=1,n

(WiXi)

The weights are optimized during the training of the
neural network in the process called network training. The
back-propagation algorithm, largely described elsewhere
[29,30], allows the optimization of the weights associated
to each couple of connected neurons, so that the network is
able to provide the correct output when certain input vector
is entered. In this process every experiment of the training
set is in turn presented to the network and the weights are
corrected in such a way to decrease the error committed by
the network in estimating the corresponding responses. In
each cycle which constitutes a learning epoch, all the exper-
iments are presented once to the network; the iterations of
the learning epochs are repeated until the network produces
satisfactory results.

The number of hidden layers and of neurons in each hid-
den layer must be selected to achieve a satisfactory fitting
ability of the network, associated to a satisfactory predictive
ability. By increasing the number of hidden layers and/or
neurons in the hidden layers, it is possible to obtain very flex-
ible networks, with incredible modeling ability, but this may
cause the network to learn the data by heart, with no general-

ization of the rules which determine the system behavior and
functioning. So it is very important to check the predictive
ability of the artificial neural networks by cross-validation
techniques. For example, by partitioning the available data
into a training set and a test set.

3. Experimental

The analyses are carried out with a Merck-Hitachi (Darm-
stadt, Germany) LaChrom-HPLC equipped with a Pump
module D-7100 interfaced by module L-7000 with two de-
tectors: the UV detector module L-7400 and the diode array
detector module L-7450; the data are collected and elabo-
rated by the D-7000 Multi HPLC System Manager Software.

A UV-Vis Unicam Spectrophotometer series 8700 is used
for the spectrophotometric determinations.

The stationary phase is a Merck Superspher 100 RP 18
endcapped column (250.0 mm × 4.6 mm, 4�m). together
with a Chrompack C18 (3.0 mm × 4.6 mm, 5�m) guard
pre-column. The mobile phases used in the experiments of
the experimental design are prepared by adding to the wa-
ter/acetonitrile mixture the required amount of alkylamine
and ofo-phosphoric acid up to the required pH value.

The chromatographic system is conditioned by passing,
under isocratic conditions, the eluent through the column
until a stable baseline signal and reproducible retention
times for two subsequent injections are obtained (about an
hour is enough). The injection volume is 100�l, controlled
by a calibrated loop. After use, the system is washed by
flowing water (1.0 ml/min for 15 min), a 50/50 (v/v) wa-
ter/acetonitrile mixture (1.0 ml/min for 10 min) and 100%
acetonitrile (1.0 ml/min for 5 min).

A Crison pH200l pH-meter equipped with a combined
glass-calomel electrode is employed for the pH measure-
ments. Ultrapure water from Milli-Q (Millipore Corporation,
Bedford, MA, USA) is used.

Benzoic acid, 4-hydroxybenzoic acid, methyl-, ethyl-,
propyl-, butyl-, benzyl-benzoate, ethyl-, propyl-, butyl-para-
ben, 4-chloro-m-cresol, dehydroacetic acid, butylamine,
hexylamine, octylamine ando-phosphoric acid are Fluka
(Buchs, Switzerland) analytical grade chemicals. Salicylic
acid, methyl-, benzyl-paraben,o-phenyl-phenol, triclocar-
ban, bronopol and chlorhexidine were purchased from
Aldrich (Milano, Italy); acetonitrile and methanol were
Merck (Darmstadt, Germany) HPLC grade chemicals.

3.1. Samples preparation

One gram of shaving foam was dissolved in 20 ml of
ultrapure water and stirred in a vortex mixer, then diluted
1:100 with the mobile phase and filtered through a 0.2�m
syringe filter. One milliliter of deodorize sample was deliv-
ered, sonicated for 15 min and then diluted 1:100 with the
mobile phase and filtered.
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Table 1
Extreme values of the variables in the full factorial design and of the star
design

CACN pH CIIR F

Min FFD 35.0 3.5 1.0 0.8
Max FFD 55.0 7.5 10.0 1.2
Min STAR 40.0 4.5 2.2 0.9
Max STAR 50.0 6.5 8.8 1.1
Central 45.0 5.5 5.5 1.0

CACN is the percentage of the organic modifier in the mobile phase;CIIR

is the concentration of ion-interaction reagent in the mobile phases (mg/l);
F is the flow rate of the mobile phase (ml/min).

4. Result and discussion

The exploration of the experimental domain is started with
a full factorial design (FFD), consisting of 16 experiments,
whose extreme values are reported inTable 1. Three repli-
cates of the central experiment were performed along the
FFD (at the beginning, in the middle and at the end of the
FFD) in order to check the analysis repeatability and to es-
timate the experimental error.

The treatment permitted to calculate the effect of the prin-
cipal factors and of their interactions. Since the test of cur-
vature[31] showed that several analytes did not exhibit a
linear behavior, a star design was added, leading to a total
of 25 experiments; in order to introduce a higher number of
levels in the experimentation and since the extreme values
employed in the FFD were already the largest possible abso-
lute values, an internal star design was employed (Table 1).

The 25 experimental retention times were used to build a
dendrogram, representing the analyte similarities as a func-
tion of their dependence on the experimental factors. The
dendogram, reported inFig. 3, was obtained by the similar-
ity between the analytes, described by their retention times
in the different experimental conditions explored in the ex-

Fig. 3. Dendrogram representing the analytes similarities in function of the retention times.

perimental design. The distance to define the objects simi-
larity was ther, Pearson correlation, so that similar behav-
iors and not the absolute retention times were responsible of
high similarities. The Ward method was used as the aggrega-
tion method. In the dendrogram, it is quite evident that there
are two groups of analytes: trichlocarban,o-phenyl-phenol,
benzoate derivative and paraben derivatives on one side and
the acids plus bronopol and two single outliers (chlorhexi-
dine and sodium pyrithione) on the other. This result con-
firms the different physico-chemical behaviors, which was
expected on the basis of the different molecular structures
and functionalities. Chlorhexidine and sodium pyrithione,
which have rather complex chemical structures, exhibit a
peculiar behavior.

The complete set of 25 experiments was first employed to
calculate for each analyte a second-order regression model,
but many of these models were not satisfactory, the worst
being those of sodium pyrithione (R2 = 0.30), of chlorhex-
idine (R2 = 0.59), of 4-Cl-m-chresol (R2 = 0.77) and of
o-phenyl-phenol (R2 = 0.79). The two worst ordinary least
square (OLS) regression models were thus obtained for the
two outliers emerged from the cluster analysis. The behav-
ior of the systems was probably too complex to be mod-
eled with OLS models, and suggested to face the problem
by means of the artificial neural networks. In particular a
non-linear effect of pH versusCACN can be envisage. pH
could possibly introduce plateau dependencies which cannot
be properly modeled by second-order regression models.

Several architectures of the ANN network with one hid-
den layer and different numbers of neurons in this layer were
explored. The networks were built modeling all together the
retention times of the analytes; this means that the output
layer was constituted by 20 neurons: one for each analyte.
A maximum of 20,000 training epochs was investigated and
few experiments have been performed according to the ex-
perimental design techniques. A leave-one-out scheme then
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Fig. 4. Leave-one-out cross-validation (LOD-CV) results for each analyte.
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has been applied, in which the iteration of the network train-
ing which provided the best prediction of the experiment left
out. Correlation coefficient of the fitted experiments above
the threshold of 0.80, was selected as that providing the op-
timal network. This procedure guarantees for the capacity
of the network to generalize the information present in the
data and to work as a predictive tool. Afterwards the net-
work to be employed for the optimization is calculated for
all the experiments, in order to exploit all the information
available.

To check the predictive ability of each architecture, a
leave-one-out cross-validation (LOD-CV) scheme was fol-
lowed, that is the only approach possible because the num-
ber of available experiments is restricted. There is anyway a
high risk to obtain, for some experiments, a good predictive
neural model by chance. This was demonstrated by some
good predictive abilities for the left out experiment, corre-
sponding to rather poor fitting abilities on the training set.
Usually these situations correspond to a very low number
of learning epochs. In fact, the network learn very soon to
model the training set. In order to avoid the risk of good but

Fig. 5. Chromatograms obtained in the optimized conditions at differentλ stationary phase: Merck Superspher 100 RP18 endcapped column
(250.0 mm× 4.6 mm, 4�m), together with a Chrompack C18 (3.0 mm× 5.0 mm, 5�m) guard pre-column. Mobile phase:CACN = 22.5%, pH = 4.1,
F = 0.9 ml/min, CIIR = 1.4 mM; peaks identification: (a) 4-hydroxybenzoic acid; (b) chlorhexidine; (c) salicylic acid; (d) benzoic acid; (e) bronopol;
(f) methyl-paraben; (g) dehydroacetic acid; (h) ethyl-paraben; (i) sodium pyrithione; (j) propyl-paraben; (k) 4-chloro-m-cresol; (l) methyl benzoate; (m)
butyl-paraben; (n) benzyl-paraben; (o)o-phenyl-phenol; (p) ethyl benzoate; (q) propyl benzoate; (r) butyl benzoate; (s) benzyl-benzoate; (t) triclocarban.

Table 2
Predicted and experimental retention time in the optimized conditions

Predicted Observed

Chlorexidine 2.74 2.74
4OH benzoic acid 3.15 2.66
Salicylic acid 3.98 2.82
Benzoic acid 4.52 3.00
Bronopol 3.56 3.66
Methyl-paraben 5.04 4.72
Dehydroacetic acid 6.50 5.05
Ethyl-paraben 7.00 6.51
Sodium pyrithione 7.75 6.76
Propyl-paraben 10.17 9.95
4-Chloro-m-cresol 11.20 10.84
Methyl-benzoate 11.63 11.31
Butyl-paraben 15.40 16.28
Benzyl-paraben 15.80 16.98
o-Phenyl-phenol 16.89 17.97
Ethyl-benzoato 18.43 18.62
Propyl-benzoate 30.75 32.66
Butyl-benzoate 45.80 55.52
Benzyl-benzoate 47.65 59.02
Triclocarban 94.93 106.10
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unreliable predictive results, a threshold on the fitting ability
of the best predictive neural networks was introduced. This
means that the good predictive results are accepted only if
the fitting ability of the network is satisfactory: a multiple
correlation coefficient higher than 0.80 was selected as the
threshold.

Even if for several analytes two neurons in the hidden
layer were sufficient to obtain good results, for others five
neurons were necessary, so this was the final architecture se-
lected. The results obtained from the LOD-CV are reported
in Fig. 4. The predictions are all very satisfactory. The worst
predicted (R2

CV = 0.8845) is 4OH benzoic acid; but the re-
sult can be: considered acceptable, given the narrow range
of the retention times observed for this analyte; The other
analytes haveR2

CV greater than 0.9700.
Since it had been demonstrated that the neural network

was able to effectively predict the retention times of the
left-out experiments, a final network with the same archi-
tecture was used for the optimization purpose. The chro-
matographic optimization was performed by a grid search
algorithm, exploring the region defined by the experimen-
tal design extremes, dividing each factor in 21 intervals. A
total of 2l4 situations was evaluated, simulating the corre-
sponding retention times by mean of the neural network.
The target function was the difference between the nearest
peaks, which had to be maximized in order to obtain the best
chromatographic resolution. The best conditions are found
as: CACN = 22.5%, pH = 4.1, F = 0.9 ml/min, CIIR =
1.4 mM; Table 2reports the experimental and predicted re-
tention times in these conditions. It can be observed that the
neural network predictive ability is very satisfactory.Fig. 5
shows the chromatogram obtained in the optimized condi-

Table 3
Validation parameters for repeatability and reproducibility evaluation

Day 1 Day 2 Reproducibility

tR,Av.1

(min)
S.D. CV

(%)
tR,Av.2

(min)
S.D. CV

(%)
tR,Av.1

(min)
tR,Av.2

(min)
Average
(min)

S.D. CV
(%)

Chlorexidine 2.67 0.03 0.40 2.81 0.07 1.00 2.67 2.81 2.74 0.03 0.48
OH benzoic acid 2.78 0.02 0.62 2.54 0.03 1.36 2.78 2.54 2.66 0.17 6.38
Salicylic acid 2.91 0.03 0.87 2.74 0.02 0.63 2.91 2.74 2.82 0.12 4.17
Benzoic acid 3.06 0.02 0.57 2.94 0.02 0.59 3.06 2.94 3.00 0.08 2.83
Bronopol 3.67 0.02 0.47 3.64 0.01 0.32 3.67 3.64 3.66 0.02 0.52
Methyl-paraben 4.73 0.02 0.37 4.71 0.03 0.74 4.73 4.71 4.72 0.01 0.30
Dehydroacetic acid 5.16 0.04 0.78 4.94 0.03 0.54 5.16 4.94 5.05 0.15 3.03
Ethyl-paraben 6.53 0.03 0.44 6.49 0.04 0.62 6.53 6.49 6.51 0.03 0.43
Odium pyrithione 6.71 0.03 0.41 6.82 0.03 0.58 6.71 6.82 6.76 0.01 0.32
Propyl-paraben 9.99 0.03 0.35 9.91 0.05 0.53 9.99 9.91 9.95 0.06 0.57
4-Chloro-m-cresol 10.90 0.06 0.52 10.79 0.08 0.76 10.90 10.79 10.84 0.08 0.70
Methyl-benzoate 11.35 0.03 0.31 11.27 0.05 0.47 11.35 11.27 11.31 0.06 0.50
Butyl-paraben 16.36 0.06 0.39 16.21 0.11 0.65 16.36 16.21 16.28 0.11 0.65
Benzyl-paraben 17.08 0.08 0.44 16.88 0.15 0.87 17.08 16.88 16.98 0.14 0.85
o-Phenyl-phenol 18.08 0.09 0.51 17.85 0.14 0.78 18.08 17.85 17.97 0.17 0.93
Ethyl-benzoato 18.69 0.06 0.29 18.54 0.11 0.61 18.69 18.54 18.62 0.11 0.57
Propyl-benzoate 32.83 0.12 0.35 32.49 0.20 0.62 32.83 32.49 32.66 0.24 0.73
Butyl-benzoate 55.89 0.24 0.44 55.15 0.39 0.71 55.89 55.15 55.52 0.53 0.95
Benzyl-benzoate 59.37 0.22 0.37 58.67 0.33 0.56 59.37 58.67 59.02 0.49 0.84
Triclocarban 107.71 0.58 0.54 104.5C 1.11 1.07 107.71 104.50 106.10 2.27 2.14

tions at 210 nm. Since not all analytes absorb at the same
UV wavelength, a further analysis was performed by mean
of the diode array (Fig. 5).

Under the optimized conditions repeatability and repro-
ducibility of the method were evaluated. Repeatability is ob-
tained by independent trials of the same method, in the same
laboratory, by the same operator in a short time period; in
these conditions three different injections of a mixture con-
taining all the analytes at concentration of 2.00 mg/l each
are performed and the averages value of the retention times,
the standard deviation and the percent variation coefficient
are calculated. The method repeatability results very good
as is never higher than 0.86% (Table 3). To evaluate the re-
producibility is necessary to prepare a new mobile phase
and a new mixture of all the analytes. The new mixture is
analyzed three times by a different operator in a different
day. The average retention times obtained with the two mix-
ture are compared and the standard deviation and the CV%
are estimated. CV% is always lower than 3.5 with the only
exceptions of 4OH benzoic acid and salicylic acid (CV of
about 6%).

For each analyte a calibration plot reporting the peak area
versus standard concentration is constructed for three dif-
ferent standard concentrations, injected with increasing con-
centration to overcome possible memory effects. Due to the
different sensitivity of the analytes the concentrations range
was between the quantitation limits (LOQs) and 7.00 mg/l.
The linearity of the response (peak area versus concentra-
tion) is verified in the whole range investigated. The corre-
lation coefficientsR2 are always >0.9574.

In order to express the sensitivity (given as the peak
area for 1.0 mg/l concentration as obtained by the slopes of
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Table 4
Correlation coefficients, LODs and LOQs for the analytes (injection
volume= 100�l)

R2 calibration plot LOD (mg/l) LOQ (mg/l)

Chlorexidine 0.9959 0.045 0.150
4OH benzoic acid 0.9998 0.015 0.051
Salicylic acid 0.9898 0.127 0.422
Benzoic acid 0.9998 0.329 1.097
Bronopol 0.9898 0.021 0.071
Methyl-paraben 0.9574 0.053 0.176
Dehydroacetic acid 0.999 0.024 0.079
Ethyl-paraben 0.9884 0.034 0.112
Sodium pyrithione 0.9999 0.020 0.066
Propyl-paraben 0.9998 0.019 0.064
4-Chloro-m-cresol 0.9999 0.045 0.149
Methyl-benzoate 0.9977 0.022 0.075
Butyl-paraben 0.9996 0.018 0.061
Benzyl-paraben 0.9976 0.014 0.045
o-Phenyl-phenol 0.9993 0.071 0.236
Ethyl-benzoato 0.9598 0.013 0.043
Propyl-benzoate 0.9988 0.050 0.167
Butyl-benzoate 0.9999 0.012 0.042
Benzyl-benzoate 0.9986 0.018 0.062
Triclocarban 0.9965 0.095 0.318

the calibration plots) into concentration units, in the chro-
matogram an area which corresponds to a signal to noise
ratio around 3 is identified and used to proportionally trans-
form sensitivity into concentration units (mg/l). LOD val-
ues, reported inTable 4, are always lower than 0.35 mg/l.
Quantitation limits also reported inTable 4are evaluated by
the calibration plots as the lowest concentration that can be
quantified and are estimated as a signal greater than a signal
to noise ratio equal to 10.

4.1. Real samples analysis

The optimized method has been applied to the analysis of
two shaving foams and one deodorizer purchased in a hard
discount and in a perfume shop.

Fig. 7. Chromatograms of the deodorizer (mobile phase and stationary phase as inFig. 5); peaks identification: (1) ethyl-paraben; (2) propyl-paraben;
(3) butyl-paraben; (4) benzyl-benzoate.

Fig. 6. Chromatograms of the two shaving foams (mobile phase and
stationary phase as inFig. 5). (a) Sample more expensive; peaks iden-
tification: (l) methyl-paraben; (2) ethyl-paraben; (3) propyl-paraben; (4)
butyl-paraben. (b) Sample purchased in a hard discount; peaks identi-
fication: (1) methyl-paraben; (2) ethyl-paraben; (3) propyl-paraben; (4)
benzyl-benzoate.

Fig. 6reports the chromatograms of the two foams shows
the presence of a number of different preservatives that
have been identified with diode array and with standard ad-
dition methods. The number of preservatives identified is
greater than that of those declared on the label, while the
label indicate the presence of ethyl-, propyl-, butyl- and
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Table 5
Concentration (mg/l) obtained from the real samples analysis

RS1 RS2 RS3

Ethyl-paraben 6.0+ 0.3 12.7+ 0.6 30.4+ 1.5
Propyl-paraben 36.5+ 1.8 60.0+ 3.0 13.7+ 0.7
Butyl-paraben 27.4+ 0.3 43.7+ 2.1
Benzyl-benzoate 62.1 + 3.1 110 + 5
Methyl-paraben 45.4+ 2.2 116 + 5.8

In bold are reported the analytes not declared in the product labels.

methyl-paraben and the preservatives identified are: ethyl-,
propyl-, butyl- and methyl-paraben and benzyl-benzoate. In
particular it can be noticed that the sample more expensive
(Fig. 6a) is characterized by an higher content of parabens
respect the more cheap one (Fig. 6b).

The third sample analyzed is an herbal deodorizer (Fig. 7);
product label reports the presence of parabens, but the anal-
ysis have revealed also the presence of benzyl-benzoate in
concentration of about 100 mg/l.

All the results of real samples analysis are reported in
Table 5.

5. Conclusions

The multiresidue method here developed can be advanta-
geously used in quality control of hygiene products, since it
permits in only one chromatographic run the identification
and the determination of a great number of preservatives,
each with different chemical structure. In the application of
the method to real samples it was possible to identify the
presence of a greater number of preservatives with respect
to those indicated on the label.
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